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ON FORCED OSCILLATIONS IN THE BOUNDARY LAYER AT 
FREQUENCIES NEAR THE UPPER BRANCH OF THE NEUTRAL CURVE* 

V.E. ZHUK 

Perturbations introduced into the boundary layer (BL) of an incompressible 
liquid by a harmonic oscillator in the form of a moving section of the 
surface are examined. Outside the oscillating part, the streamlined 
solid is a plane plate. It is assumed that the Reynolds number is large 
and the oscillation frequency, corresponds, in order of magnitude, to the 
asymptotic form of the upper branch of the neutral stability curve (NSC). 
The system of equations for perturbations, at small amplitudes of the 
oscillator, is linearized and is solved by the Fourier method. In addition, 
for each Fourier component, the flow field is divided into five sublayers. 
The amplitude of a Tollmin-Schlichting wave (TS) is calculated and 
separated from the perturbed background downstream of the oscillator. If 
the oscillator frequency exceeds the neutral value at the upper branch of 
NSC with the given Reynolds number, the TS wave amplitude decays. For 
frequencies below neutral , the wave amplitude increases exponentially 
downstream. In the final example, the parameters of the TS wave fall 
within the unstable region, between two NSC branches. 

At a distance L* from the front edge of the plane surface with an incompressible viscous 
liquid flowing over it, let there be a moving section of surface of length l*whichisoscillat- 
ing at a frequency w* (henceforth the asterisk denotes dimensional quantities). Defining 
the Reynolds number as R = U,*L*Iv*, where U,* is the velocity of the oncoming flow and v* 
is the kinematic viscosity, we will assume R-m. AII investigation of the perturbation 
propagation process caused by the moving section is one of the problems of BL reproducibility. 

The solution of this problem taking compressibility into account and for any Mach number 
at infinity was obtained previously in /l, 2/ for 1* = 0 (R-"IL*), 69 = 0 (R'~*CJ',*L*~), starting from 
the linearized equations of the theory of free interaction /3, 41, which, as is well-known 
/5, 6/, is subject to perturbations in the given range of frequencies. In the subsonic case, 
the first mode from the spectrum of eigensolutions of these equations corresponds to the 
*Prikl.~ate~.~e~~.,51,3,417-424,1987 
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limiting form of TS wave for large Reynolds numbers in the neighbourhood of the iower branch 
of the NSC. As follows from /2, 7/, perturbations downstream from the oscillator degenerate 
into precisely this wave. 

Below, the question of TS wave generation in proximity to the upper branch of the NSC 
is examined. Naturally, the orders of the frequency and of the characteristic length differ 
from those assumed in the theory of free interaction, namely 1" = O(R-“f2aL*) and (08 = 0 
(R”N,*L*-‘) are assumed. we put 0 = R-‘l*a. The mobile part of the surface is specified by 
the equation 

yw* = hd*L*G (T, X), T = u-*/y,*L*-‘t*, X = o-sL*-’ (x* _ L*) (1) 

where t*is the time, X*, $I* are the coordinates of a Cartesian system with the I* axis 
directed along the plate around which the flow occurs , and h isadimensionless parameter. 

First, we note that, irrespective of the causes of oscillations of the fluid in the BL, 
there is a viscous sublayer in the vicinity of the wall with thickness of order of R-'IPL* 
(~~~L~~~~~~-~~~ = ar4L*, In particular, this type of sublayer exists in the case of free 
oscillations, when G = 0. It can be seen from Eq.(l) that, for h = O(l), the part of the 
surface which changes shape sinks into the viscous sublayer caused, in this instance, by 
oscillations of this part itself. 

We will find the ordersofthe perturbations of the components u* and u* of the velocity 
vector and the pressure p* for flows round an oscillating non-uniformity. The surface of 
the moving part on the plate has the vertical component of velocity vW* = ha"U,* [dGldl' 3- 
O($")], whereas the tangential component of the surface velocity, of the order of ho” U.w*, 
can be neglected. The components Um*UO,Lr,* V, of the velocity vector of the unperturbed 
steady flow in the BL on a plane plate can be represented in the form 

U, = 15's (z, Ynl) + 0 (a'"). V, = a*OVB (5, Y,,,) -t 0 (a"") 
z = L*-*s*, Y,,, _ a-ioL'-'~* 

(2) 

where the functions Usand VJ+, for the first of which the following limit properties hold, 

Y, -f 0, us -, h, (x) Y, + b, (x)Y,,"i24 i- .I‘ (3) 
Y,,--+ M, Us-'1 +... 

are specified by the Blasius solution. As a result of the deformation of the wall, the 
adhesion condition must be satisfied, not for Y, = 0, but on the contour Y, = ha4G, where, 
by virtue of (3), the unperturbed velocity is of the order of hdU,*. Therefore, the 
perturbation of the longitudinal component of the velocity u* is of the same order. If this 
last estimate is also true for flows round a stationary non-uniformity, then the perturbation 
of the vertical velocity component v* of order h@U,* is linked to the change in the shape 
of the non-uniformity with time. The change in the pressure p* of a fluid of density P*, 
compared with the value pm* in a flow from infinity using the equation of conservation of 
the component of momentum along the z* axis is estimated as 0 (ha6p*U *z) m * 

These estimates, obtained in the region of the wall in the vicinity of the oscillator 
are also correct for all BL thicknesses, with the exception of the perturbation of the vertical 
velocity component. In fact, for Y,, = O(l), it follows from the equation of continuity 
that the perturbation v* is of the order of habUm*. 

In the base part of the BL the field of flow parameters can be written in the form 

where P, = 0 (a*@) is the unperturbed pressure, Got 'vo9 PlJ are functions of X. Ym and CT, 
while %,v,,, and pm are functions of T,X,Ym, a and h. Tlb Navier-Stokes equations are 
transformed in the following way , as a result of substituting expressions (4) into them, 
taking relations (2) into account: 
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As may be seen from (5), non-parellelismof the BL distorts functions with subscript m by an 
amount of the order of c9. The non-linear terms make a contribution of the order of hd.The 
relative value of the viscous terms in Eqs.(5), generally speaking, can exceed the value of 
G9. For example, the viscous terms are essential in the critical layer (for travefling-wave 
type perturbations) and also in proximity to the surface around which flow occurs. 

Equality of the orders of the term with the second derivative along the verticalcoordi- 
nateandthat of the non-stationary term in the first equation of system (5) is achieved if 
I-,,, = c*I',, 1'~ = 0 (1). The new variable Yi = c-lrL*-'y* of the viscous wall sublayer in which 
the oscillator is submerged is introduced by the last relation. In accordance with the esti- 
mates in the wall sublayer introduced above we have 

( p*--Pp*, 
--- 

;; -g *, 
P*u, ) 

= tff, + ha*%, v, + hn%,, P, + h&3,) 

where Ii,, V,,P, depend on x,o-'Y, and c,while u~,v, and p, depend on T,X,Y,,a 
Moreover, the unperturbed profile of the longitudinal component of the velocity 
the expression U. = a%,l't + O(o’*). From the Navier-Stokes equations we have 

and h. 
is given by 

(7) 

The system of Eqs.(7) maybe derived from system (51, by changing to the variable Y-1 and 
using relations (3). 

Boundary conditions on the surface take the form 

Y, = hG, u, = --h,G, vi = c?GlaT (8) 

The dependence on the "slow" coordinate of r of the functions Us and V, as also the 
coefficients hr.1, at distances X = O(1) change them by an amount of the order of ue, 
Therefore, everywhere below we assume 5 p 1 and, in particular, hr = 0.3321, A4 = -h,'l2. 

Let us omit in Eqs.(7) the correction terms denoted by the symbol 0 of higher order of 
smallness with respect to the parameter ff,while retaining terms of the order ofu3.Tolinearize 
the first equation of system (7) we will assume the parameter h to be small. Let us consider 
the case h((03. Let the wall oscillate periodically with time 

G (T, X) = G’ (X) exp (iQT) 

at a frequency whose value in the initial system of units is o* =;I cPU,*L*-‘Q. We will 
represent the required flow functions in the lower sublayer as 

(ai. L'/. p,) = (ul', ~"j, pl') exp (iQT) (9) 

We pass from primed amplitudes to their Fourier transform which is denoted by a bar, 
for example 

&(Q,K,YI,o)= 5 ~~'(Q,X,Y,,o)exp(- iKX)dX 
-cn 

Eqs.(7) with their linear terms neglected give 

i(Q + 03iLlKY~)iil -+ h&i1 = - iKjil + pu,JaY,? (10) 
als,/aY, = 0, ic+K!i~ + av,laY, z 0 

The boundary adhesion conditions were transferred on to the line Yc = 0, which allows 
of the same error as for the neglected non-linear terms. We then obtain from (8) 

YI=O, iiz=-&C, iI,=i517: (11) 

With the help of (10) and (11) we can expressthe functions EZl, 171 in terms of the 
previously unknown Fourier transform of the pressure pt. In the plane of the complex variable 

z,=c~(ih,K)'l~Y~ + &, cl= o+i'KJ (X,K)“*, 
- 3njZ<argK<x/2 

we have 

(12) 
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The solution of problem (12), which satisfies the condition for there to be no exponential 
growth at infinity (along the radius argz, = +c'6), is given by the expression 

FL = iW +- u2 (ih,K)“* CT (zl - ;,) - (13) 

Here, Ai (zl) is the Airy function. Since Izl 1 and 1 j, 1 are of the order of UP, we 
replace the Airy function in (13) by its asymptotic form /8/ for large values of the argument. 
Returning to the variable Yl,we obtain 

exp [- (isZy/z Yl]) + O(u6); argQ= 
0, Q>O 

--n, n<o 

We will now construct a solution in the basic thickness of the BL. We will neglect non- 
linear terms in (5) and also terms connected with the non-parallelism of the initial flow 
in the BL. Separating the time factor exp(iQT), as in (9), in all required functions with 
subscript m and carrying out a Fourier transformation along the X coordinate, we reduce system 
(5) to the Orr-Sommerfeld equation 

where 5, is the Fourier transform of the vertical component of the velocity. The parameter c 
in Eq.(l5) relays the role of the phase velocity, since every Fourier perturbation component 
with a periodic time dependence is a travelling wave. The parameter 6 has the meaning of 
the ratio of the BL thickness to the wavelength of the perturbations. 

The viscous terms on the right-hand side of Eq.(lS) , which are of the order of the 
neglected terms arising from the growth of the BL thickness, must also be omitted everywhere, 
with the exception of the critical layer. The value of the coordinate Y, = Y,", in the 
neighbourhood of which the critical layer is situated , corresponds to the equality LTs = C. 
Moreover, as a result of the smallness of c = O(u) using expansion (3) we find Y,,C = FL,-'c - 
h,h,-'c4124. It is known that when there are no viscous terms, the solution of Eq. (15) at the 
point Y, = Y,' has a logarithmic singularity. By equating the left- and right-hand sides 
of Eq.(15) in this singular solution (derived below) we obtain an estimate of the thickness 
of the critical layer Y, - Y,c = O(#). 

In the inviscid Eq.(15), omitting the right-hand side, the parameters c and 6 are 
conveniently considered as independent and can be represented in the form /9, lO/ 

G, = fo + S’f, + . . . (16) 

assuming the value of c to be fixed. To a first approximation 

(U, -c,* mJB 

m 
-,Y,‘fo=O (171 

Outside the BL, where Us = 1, we select the exponential decaying solution of the form 
aexp (TY,), Y,=6Y, as Y,-00 from the two linearly independent non-viscous solutions of 
(15). Assuming Y,- 0 we obtain the asymptotic boundary condition on the external boundary 
of the BL 

Ym->l>a, ii,-,a(lT6Y,+l/zSaY,z+...) (18) 

Here and henceforth the upper symbol corresponds to K>O, the lower to K<O, and the 
constant a is unknown. The limit expression (18) shows that f,,,fr may depend on 6 in view 
of the boundary conditions. Of course, this does not make expansion (16) incorrect. 

The solution of Eq.(17), satisfying the condition f,,-f a (IT 6Y,) where Y,--t 00, is 



written in the following way: 

j,, = a (I - C)-l (uB - C) + 6a (1 - c) (UB - c) x 
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(19) 
m 

1s [ &--- (&a dym’ - (l-c)2 , 1 LI 
YfIl 

Expression (19) is suitable for all real Y, if c<O. If c>o the expression only 
has meaning for Y,>Y’. The asymptotic form of the solution in the critical layer at its 
lower boundary gives the condition for matching, by which the solution of the non-viscous 
Eq.(17) between the critical layer and the wall is unique. This asymptotic form can be 
computed even without reference to the solution in the critical layer itself. Indeed, as 
follows from /9, lo/, when K>O the asymptotic expression for the viscous solution on 
the upper boundary of the critical layer permits an analytical continuation at its lower 
boundary, through the region o"< IY,- Y,,,' I<c of complex values of Y,, circumventing 
the point Y,” in a clockwise direction. Similarly, when K <O the point Y,” is bypassed 
anticlockwise. But the asymptotic form on the upper boundary of the critical layer, however, 
is known and is set by the limit of expression (19) where Y, = Y," + 0. Hence it follows 
that the function (19) is a solution of the non-viscous Eq.(l7) as well as in the region 
between the critical layer and the wall (for real O<Y,<Y,“), if the interval in (19) is 
taken along a path which goes round the singular point Y," according to the rule described 
above. 

Let Y, = 0 (c). Then expression (19) can be transformed to the form 

j, = al,, (Y, - Y,") i + t + t@3 Cc) (Ynl - YTn’) x 

[In 1 Y,- Y,'l + i arg(Y,- YC)l + . . . 
(a) 

where for real Y, we must put arg (Y, - Ymc) = 0, if Y, > Y,,,‘, and arg (Y, - Y,“) = --x sign K, 
if Y, ( Y,“; Cl (c) is the Heaviside unit function. 

we will match the components of the velocity vector on the upper boundary of the viscous 
wall sublayer, where a4< Y,<c. Changing to the "inner" variable Y1 = u-*ym in (20) we 
obtain 

ti, = ia 
[ 

h T - ias 2h14xa 2%!ce(_~)] +. ., 

2),,=oa +--_t$ - ia 
[ 1 

$$&e(-$)I+ 

&aY, 
[ 
h, -- io3 2h K S$?J-e(-+j] +... 

421) 

The first of these formulae is derived from the equation of continuity ii,,, = -(iK)“dC,,,idI-,,,. 
In expressions (21) the main terms are retained separately for their real and imaginary parts 
which, having a different order of smallness with respect to the parameter o, are nevertheless 
reliably calculated without referring to the leading terms in expansion (16). 

From (4) and (6) we obtain the matching conditions for the Fourier-transforms IZ~ --t&,,,, 
oa, -? 5, at Y,+cx, where functions with the subscript m are specified by Eqs.(Zl), and 
functions with subscript 1 are determined by expressions (14). These conditions lead to two 
equations in the Fourier-transform of the pressure Pr and the constant a. Eliminating the 
latter, we find 

When deriving (22) we assumed K= O(1). Formula (22) is unsuitable when K= O(u), since 
the phase velocity c= --oR/K in this case is a value of the order of unity which violates the 
correctness of (20). The derivation of formula (22) is also ineffectual for K=O(o-I), since 
in this case the parameter 6= UK, by which the expansion (16) is carried out, is not small. 
Nevertheless, as follows from the laws of decay of expression (20) in the vicinity of zero 
and at infinity, its use over the whole real axis K, when taking the inverse Fourier trans- 
formation, introduces an error which does not exceed that (of order a) resulting from ex- 
pression (22) itself. 

To be specific we will assume that Q>O. Thus the critical layer exists when K (0. 
Changing from Fourier transforms to the originals, for the pressure we obtain the formula 

(23) 
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The integrand in the first of the integrals has a pole of the first order at the point 
K'=K, -/iKin of the complex plane K, at a short distance of the order of us from the 
negative real semiaxis. If the real and imaginary parts of the denominator of the specified 7 
integrand are equated to zero we obtain 

The complex quantity K” is an eigenvalue of the wave number in the problem of free 
oscillations in the BL near to the upper branch of the NSC (G = 0) and, in this case, ex- 
pressions (24) makes up two parts of the dispersion relation. The condition Ki” = 0 determines 
the frequency Q == 0' of neutral natural oscillations. From (24) we have 

Q" _ (-2'lz~-'~,'~",-')'/~ (2;,) 

If we return to the initial system of units then Eq.(25) acquires the formo* = H’~~L’,*L*-‘L2’, 
which establishes the principal term of the asymptotic form of the upper branch of the NSC 
at large Reynolds numbers /ll-13, 9, lo/. 

We will consider the case !Z > i2,. Then, in accordance with (24) we have Ki’ 20. Let 
the function G’(X) differ from zero in the interval 0< X< b. Then when X > b in the first 
term of formula (23), as a means of integration we replace the negative real semiaxis by a 
positive imaginary axis and an arc of a circle of fairly large radius in the second quadrant 
of the complex plane K, in which the integrand is exponentially small. As a result, expression 
(23) can be represented as the sum of the subtraction at the point K‘ and of two integrals 
along the imaginary positive and real semiaxes. Assuming that S = iK, we finally obtain 

1/liE.162C (K,.“) exp (iK,“X - Ki”X) 

where K,” and Ki” are defined by formulae (24). The final item in (26) generated by the pole 
of the Fourier transformant p, is a TS wave with a decay decrement K,“. Both integrals in 
(26) decayas X-- x) according to the law 0 (X-?), whereas the exponential decrease of the 
amplitude of the TS wave downstream becomes as small as desired as the frequency 52 tends 
towards the neutral value Q" from above. 

By replacing the path of integration in the first integral of formula (23) by the negative 
imaginary semiaxis, it is possible to represent the pressure for the region upstream of the 
oscillator (X-CO) in the form of the sum of two integral terms similar to the two first 
terms in (26) and possessing the asymptotic form )X Ima, X - - CCJ. However, there is no term 
linked to the subtraction at the point K”. 

We note that expression (26) does not retain special features at the point 0 = n" and 
also gives the solution to the problem for Q< n"/14/, although, as a result of exponential 
growth, it does not additionally satisfy the condition for the Fourier transformation to be 
applicable. 

The TS wave in the neighbourhood of the upper NSC branch is characterized by the relation 
Kt”IK,” = 0(u3). This neighbourhood in the unstable region Q < P" is overlapped by the 
neighbourhood of the lower NSC branch when Q =: O(cF‘). Indeed, from (24) it follows that 
KiC/Kro = 0 (I), and Ki" = 0 (I+), and the frequency and wave number in dimensional variables 
are 

~*~R'~"~~L"-'Q~O (#'U:L*-'), 
k* __R'I'"L*-'K"-;O(R'~"~*-1) 

which corresponds to the asymptotic form of the lower branch of the NSC or its neighbourhood. 
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SEPARATION OF A FLOW FROM THE CORNER PO1 NT OF A BODY* 

E.V. BCGDANOVA and O.S. RYZHOV 

Changes in the velocity field which occur when the external pressure 
gradient is gradually increased, the gradient being determined by the 
theory of jet flows of an ideal incompressible fluid, are studied. The 
possibility of an essentially non-linear viscous sublayer occuring in the 
preseparation region, which adheres to the rigid surface, is noted. A 
solution of the boundary value problem is given for a boundary layer 
interacting freely with the potential flow under the conditions when the 
initial pressure gradient changes its sign from negative to positive. In 
this case a stagnation point appears in the incoming flow. 

1. The preseparation region. We shall assume that the surface of the streamlined 
body has a corner, at which the flow becomes separated. We choose the radius of curvature 
of the surface, the velocity of potential flow of fluid at the corner point, and its density, 
as the three basic units of measurement. Assuming that a change to dimensionless variables 
has been made, we shall direct the s axis of the curvilinear orthogonal system of coordinates 
along the generatrix of the body , and the II axis along its normal. Let u' and v' be the 
components of the perturbed velocity vectors and p'the excess pressure in the outer potential 
*Prikl.Matem.Mekhan.,51,3,425-433,1987 


